(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_22 (Sun Microsystems Inc.) Main-Class: TwoWay/TwoWay
package TwoWay;

public class Random {
static String[] args;
static int index = 0;

public static int random() {
final String string = args[index];
index++;
return string.length();
}
}


package TwoWay;

public class TwoWay {
public static void main(String[] args) {
Random.args = args;
twoWay(true, Random.random());
}

public static int twoWay(boolean terminate, int n) {
if (n < 0) {
return 1;
} else {
int m = n;
if (terminate) {
m--;
} else {
m++;
}
return m*twoWay(terminate, m);
}
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
TwoWay.TwoWay.main([Ljava/lang/String;)V: Graph of 86 nodes with 0 SCCs.

TwoWay.TwoWay.twoWay(ZI)I: Graph of 29 nodes with 0 SCCs.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 15 rules for P and 14 rules for R.


Combined rules. Obtained 1 rules for P and 4 rules for R.


Filtered ground terms:


329_1_twoWay_InvokeMethod(x1, x2, x3, x4) → 329_1_twoWay_InvokeMethod(x1, x2, x4)
275_0_twoWay_GE(x1, x2, x3, x4) → 275_0_twoWay_GE(x3, x4)
Cond_275_0_twoWay_GE(x1, x2, x3, x4, x5) → Cond_275_0_twoWay_GE(x1, x4, x5)
357_0_twoWay_Return(x1, x2) → 357_0_twoWay_Return(x2)
Cond_329_1_twoWay_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_329_1_twoWay_InvokeMethod1(x1, x2, x3, x5)
Cond_329_1_twoWay_InvokeMethod(x1, x2, x3, x4, x5) → Cond_329_1_twoWay_InvokeMethod(x1, x3, x5)
340_0_twoWay_Return(x1, x2) → 340_0_twoWay_Return
301_0_twoWay_Return(x1, x2, x3, x4) → 301_0_twoWay_Return

Filtered duplicate args:


329_1_twoWay_InvokeMethod(x1, x2, x3) → 329_1_twoWay_InvokeMethod(x1, x3)
275_0_twoWay_GE(x1, x2) → 275_0_twoWay_GE(x2)
Cond_275_0_twoWay_GE(x1, x2, x3) → Cond_275_0_twoWay_GE(x1, x3)
Cond_329_1_twoWay_InvokeMethod1(x1, x2, x3, x4) → Cond_329_1_twoWay_InvokeMethod1(x1, x2, x4)
Cond_329_1_twoWay_InvokeMethod(x1, x2, x3) → Cond_329_1_twoWay_InvokeMethod(x1, x3)

Combined rules. Obtained 1 rules for P and 4 rules for R.


Finished conversion. Obtained 1 rules for P and 4 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
275_0_twoWay_GE(-1) → Cond_275_0_twoWay_GE(0 > -1, -1)
Cond_275_0_twoWay_GE(TRUE, -1) → 301_0_twoWay_Return
329_1_twoWay_InvokeMethod(301_0_twoWay_Return, -1) → 357_0_twoWay_Return(-1)
329_1_twoWay_InvokeMethod(340_0_twoWay_Return, x1) → Cond_329_1_twoWay_InvokeMethod(1 > -1, 340_0_twoWay_Return, x1)
Cond_329_1_twoWay_InvokeMethod(TRUE, 340_0_twoWay_Return, x1) → 357_0_twoWay_Return(x1 * -1)
329_1_twoWay_InvokeMethod(357_0_twoWay_Return(x0), x1) → Cond_329_1_twoWay_InvokeMethod1(x0 < 1, 357_0_twoWay_Return(x0), x1)
Cond_329_1_twoWay_InvokeMethod1(TRUE, 357_0_twoWay_Return(x0), x1) → 357_0_twoWay_Return(x1 * x0)

The integer pair graph contains the following rules and edges:
(0): 275_0_TWOWAY_GE(x1[0]) → COND_275_0_TWOWAY_GE(x1[0] >= 0, x1[0])
(1): COND_275_0_TWOWAY_GE(TRUE, x1[1]) → 275_0_TWOWAY_GE(x1[1] + -1)

(0) -> (1), if ((x1[0] >= 0* TRUE)∧(x1[0]* x1[1]))


(1) -> (0), if ((x1[1] + -1* x1[0]))



The set Q consists of the following terms:
275_0_twoWay_GE(-1)
Cond_275_0_twoWay_GE(TRUE, -1)
329_1_twoWay_InvokeMethod(301_0_twoWay_Return, -1)
329_1_twoWay_InvokeMethod(340_0_twoWay_Return, x0)
Cond_329_1_twoWay_InvokeMethod(TRUE, 340_0_twoWay_Return, x0)
329_1_twoWay_InvokeMethod(357_0_twoWay_Return(x0), x1)
Cond_329_1_twoWay_InvokeMethod1(TRUE, 357_0_twoWay_Return(x0), x1)

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 275_0_TWOWAY_GE(x1) → COND_275_0_TWOWAY_GE(>=(x1, 0), x1) the following chains were created:
  • We consider the chain 275_0_TWOWAY_GE(x1[0]) → COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0]), COND_275_0_TWOWAY_GE(TRUE, x1[1]) → 275_0_TWOWAY_GE(+(x1[1], -1)) which results in the following constraint:

    (1)    (>=(x1[0], 0)=TRUEx1[0]=x1[1]275_0_TWOWAY_GE(x1[0])≥NonInfC∧275_0_TWOWAY_GE(x1[0])≥COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])∧(UIncreasing(COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>=(x1[0], 0)=TRUE275_0_TWOWAY_GE(x1[0])≥NonInfC∧275_0_TWOWAY_GE(x1[0])≥COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])∧(UIncreasing(COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)







For Pair COND_275_0_TWOWAY_GE(TRUE, x1) → 275_0_TWOWAY_GE(+(x1, -1)) the following chains were created:
  • We consider the chain COND_275_0_TWOWAY_GE(TRUE, x1[1]) → 275_0_TWOWAY_GE(+(x1[1], -1)) which results in the following constraint:

    (6)    (COND_275_0_TWOWAY_GE(TRUE, x1[1])≥NonInfC∧COND_275_0_TWOWAY_GE(TRUE, x1[1])≥275_0_TWOWAY_GE(+(x1[1], -1))∧(UIncreasing(275_0_TWOWAY_GE(+(x1[1], -1))), ≥))



    We simplified constraint (6) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (7)    ((UIncreasing(275_0_TWOWAY_GE(+(x1[1], -1))), ≥)∧[2 + (-1)bso_24] ≥ 0)



    We simplified constraint (7) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (8)    ((UIncreasing(275_0_TWOWAY_GE(+(x1[1], -1))), ≥)∧[2 + (-1)bso_24] ≥ 0)



    We simplified constraint (8) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (9)    ((UIncreasing(275_0_TWOWAY_GE(+(x1[1], -1))), ≥)∧[2 + (-1)bso_24] ≥ 0)



    We simplified constraint (9) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (10)    ((UIncreasing(275_0_TWOWAY_GE(+(x1[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_24] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 275_0_TWOWAY_GE(x1) → COND_275_0_TWOWAY_GE(>=(x1, 0), x1)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])), ≥)∧[(-1)Bound*bni_21] + [(2)bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)

  • COND_275_0_TWOWAY_GE(TRUE, x1) → 275_0_TWOWAY_GE(+(x1, -1))
    • ((UIncreasing(275_0_TWOWAY_GE(+(x1[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_24] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(275_0_twoWay_GE(x1)) = [-1]   
POL(-1) = [-1]   
POL(Cond_275_0_twoWay_GE(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(301_0_twoWay_Return) = [-1]   
POL(329_1_twoWay_InvokeMethod(x1, x2)) = [-1] + [-1]x1   
POL(357_0_twoWay_Return(x1)) = x1   
POL(340_0_twoWay_Return) = [-1]   
POL(Cond_329_1_twoWay_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3   
POL(1) = [1]   
POL(*(x1, x2)) = x1·x2   
POL(Cond_329_1_twoWay_InvokeMethod1(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(<(x1, x2)) = [-1]   
POL(275_0_TWOWAY_GE(x1)) = [2]x1   
POL(COND_275_0_TWOWAY_GE(x1, x2)) = [2]x2   
POL(>=(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   

The following pairs are in P>:

COND_275_0_TWOWAY_GE(TRUE, x1[1]) → 275_0_TWOWAY_GE(+(x1[1], -1))

The following pairs are in Pbound:

275_0_TWOWAY_GE(x1[0]) → COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])

The following pairs are in P:

275_0_TWOWAY_GE(x1[0]) → COND_275_0_TWOWAY_GE(>=(x1[0], 0), x1[0])

There are no usable rules.

(6) Complex Obligation (AND)

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
275_0_twoWay_GE(-1) → Cond_275_0_twoWay_GE(0 > -1, -1)
Cond_275_0_twoWay_GE(TRUE, -1) → 301_0_twoWay_Return
329_1_twoWay_InvokeMethod(301_0_twoWay_Return, -1) → 357_0_twoWay_Return(-1)
329_1_twoWay_InvokeMethod(340_0_twoWay_Return, x1) → Cond_329_1_twoWay_InvokeMethod(1 > -1, 340_0_twoWay_Return, x1)
Cond_329_1_twoWay_InvokeMethod(TRUE, 340_0_twoWay_Return, x1) → 357_0_twoWay_Return(x1 * -1)
329_1_twoWay_InvokeMethod(357_0_twoWay_Return(x0), x1) → Cond_329_1_twoWay_InvokeMethod1(x0 < 1, 357_0_twoWay_Return(x0), x1)
Cond_329_1_twoWay_InvokeMethod1(TRUE, 357_0_twoWay_Return(x0), x1) → 357_0_twoWay_Return(x1 * x0)

The integer pair graph contains the following rules and edges:
(0): 275_0_TWOWAY_GE(x1[0]) → COND_275_0_TWOWAY_GE(x1[0] >= 0, x1[0])


The set Q consists of the following terms:
275_0_twoWay_GE(-1)
Cond_275_0_twoWay_GE(TRUE, -1)
329_1_twoWay_InvokeMethod(301_0_twoWay_Return, -1)
329_1_twoWay_InvokeMethod(340_0_twoWay_Return, x0)
Cond_329_1_twoWay_InvokeMethod(TRUE, 340_0_twoWay_Return, x0)
329_1_twoWay_InvokeMethod(357_0_twoWay_Return(x0), x1)
Cond_329_1_twoWay_InvokeMethod1(TRUE, 357_0_twoWay_Return(x0), x1)

(8) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
275_0_twoWay_GE(-1) → Cond_275_0_twoWay_GE(0 > -1, -1)
Cond_275_0_twoWay_GE(TRUE, -1) → 301_0_twoWay_Return
329_1_twoWay_InvokeMethod(301_0_twoWay_Return, -1) → 357_0_twoWay_Return(-1)
329_1_twoWay_InvokeMethod(340_0_twoWay_Return, x1) → Cond_329_1_twoWay_InvokeMethod(1 > -1, 340_0_twoWay_Return, x1)
Cond_329_1_twoWay_InvokeMethod(TRUE, 340_0_twoWay_Return, x1) → 357_0_twoWay_Return(x1 * -1)
329_1_twoWay_InvokeMethod(357_0_twoWay_Return(x0), x1) → Cond_329_1_twoWay_InvokeMethod1(x0 < 1, 357_0_twoWay_Return(x0), x1)
Cond_329_1_twoWay_InvokeMethod1(TRUE, 357_0_twoWay_Return(x0), x1) → 357_0_twoWay_Return(x1 * x0)

The integer pair graph contains the following rules and edges:
(1): COND_275_0_TWOWAY_GE(TRUE, x1[1]) → 275_0_TWOWAY_GE(x1[1] + -1)


The set Q consists of the following terms:
275_0_twoWay_GE(-1)
Cond_275_0_twoWay_GE(TRUE, -1)
329_1_twoWay_InvokeMethod(301_0_twoWay_Return, -1)
329_1_twoWay_InvokeMethod(340_0_twoWay_Return, x0)
Cond_329_1_twoWay_InvokeMethod(TRUE, 340_0_twoWay_Return, x0)
329_1_twoWay_InvokeMethod(357_0_twoWay_Return(x0), x1)
Cond_329_1_twoWay_InvokeMethod1(TRUE, 357_0_twoWay_Return(x0), x1)

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(12) TRUE